
Please note:

If you experience some difficulty in viewing some
of the pages, use the magnifying tool to enlarge the

specific section





This is a preprint of a paper intended for publication in a journal or proceedings.  Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

UCRL-JC-118609
PREPRINT

An Adaptive Multifluid Interface-Capturing
Method for Compressible Flow

 in Complex Geometries

April 1995

J.A. Greenough
V. Beckner

R.B. Pember
W.Y. Crutchfield

J.B. Bell
P. Colella

This paper was prepared for submittal to the
26th American Institute of Aeronautics and Astronautics

Fluid Dynamics Conference
San Diego, CA

June 19-22, 1995

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government.  Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California.  The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.



AN ADAPTIVE MULTIFLUID INTERFACE-CAPTURING METHOD FOR

COMPRESSIBLE FLOW IN COMPLEX GEOMETRIES�

Je�rey A. Greenough,Vincent Beckner, Richard B. Pember,

William Y. Crutch�eld, John B. Bell, and Phillip Colella

Lawrence Livermore National Laboratory,

P.O. Box 808, L-316,

Livermore, CA 94550

Abstract

We present a numerical method for solving
the multiuid equations of gas dynamics using
an operator-split second-order Godunov method
for ow in complex geometries in two and three
dimensions. The multiuid system treats the
uid components as thermodynamically distinct
entities and correctly models uids with di�er-
ent compressibilities. This treatment allows a
general equation-of-state (EOS) speci�cation and
the method is implemented so that the EOS refer-
ences are minimized. The current method is com-
plementary to volume-of-uid (VOF) methods in
the sense that a VOF representation is used, but
no interface reconstruction is performed. The
Godunov integrator captures the interface dur-
ing the solution process. The basic multiuid in-
tegrator is coupled to a Cartesian grid algorithm
that also uses a VOF representation of the uid-
body interface. This representation of the uid-
body interface allows the algorithm to easily ac-
commodate arbitrarily complex geometries. The

�This work was performed under the auspices of

the U.S. Department of Energy by the Lawrence Liver-

more National Laboratory under contract W-7405-Eng-

48. Support under contract W-7405-Eng-48 was provided

by the Applied Mathematical Sciences Program and the

HPCC Grand Challenge Program of the O�ce of Sci-

enti�c Computing at DOE and by the Defense Nuclear

Agency under IACRO 95-2045. Prof. Colella was sup-

ported at UC Berkeley by DARPA and the National Sci-

ence Foundation under grant DMS-8919074; and by a Na-

tional Science Foundation Presidential Young Investigator

award under grant ACS-8958522; and by the Department

of Energy High Performance Computing and Communi-

cations Program under grant DE-FGO3-92ER25140.

resulting single grid multiuid-Cartesian grid in-
tegration scheme is coupled to a local adaptive
mesh re�nement algorithm that dynamically re-
�nes selected regions of the computational grid
to achieve a desired level of accuracy. The over-
all method is fully conservative with respect to
the total mixture. The method will be used for
a simple nozzle problem in two-dimensional ax-
isymmetric coordinates.

Introduction and Overview

Compressible ows in which the uid is made
up of a number of thermodynamically distinct
species, an extreme system being liquid-gas, arise
in a wide variety of engineering applications re-
quiring realistic geometries. In this paper we de-
scribe an algorithm for modeling inviscid com-
pressible multiuid ows containing complex ge-
ometries in two and three space dimensions. The
basic algorithm is an operator split second-order
Godunov method used to solve the Euler equa-
tions for multiuid ow. The algorithm cap-
tures rather than tracks the interfaces between
distinct materials while maintaining a volume-
of-uid (VOF) representation of the constituent
materials. That is, the interface is obtained dur-
ing the coarse of the Godunov solution with-
out recourse to an interface reconstruction. As
such, the present multiuid method provides a
complementary approach to VOF interface track-
ing algorithms. While there are numerous ap-
proaches to tracking interfaces, we shall only
mention those in the class of VOF techniques.
The simplest VOF interface reconstruction algo-
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rithms are those based on the Simple Line Inter-
face Calculation (SLIC) method [12]. There are
numerous other �rst-order variations on this such
as the center of mass method [16], central di�er-
ences [11], and Youngs' method [17]. To obtain
a second-order reconstruction, there is an algo-
rithm based on a least squares �t to the local
volume fractions pro�le [15]. In all of the inter-
face tracking methods, a sub-grid scale method of
reconstructing the interface must be used to com-
pute the current location of the material interface
and as a result the interface remains sharp. The
primary disadvantage to using these methods is
the expense. Having to reconstruct the interface
adds extra computation over simply advancing
the ow in time. In addition, the reconstruction
process is performed on a cell by cell basis hence
requiring some coding sophistication so that vec-
torization can be achieved on modern supercom-
puters. However, if the number of cells occupied
by the interface is small, then this cost may be
minimized. When complex geometry is included,
there are added di�culties in coupling a recon-
struction algorithm more complex than SLIC.

Another point of consideration is that interface
tracking techniques may not be appropriate for
all problems. If the interface is initially sharp and
retains its integrity over time then tracking the
interface is appropriate. However, if the uids
become mixed either by di�usion, by large-scale
motions or are initially mixed, then treating the
interface as a discontinuity gives a representation
that is inconsistent and probably meaningless.
This leads to consideration of the current method
since it does not require tracking the interface,
yet has the ability to distinguish thermodynami-
cally distinct uid components and compute mix-
ture properties using the VOF formulation. Fur-
thermore, the ability to describe such ows in
arbitrarily complex geometry provides a compu-
tational capability important for real world engi-
neering applications. We refer to the methodol-
ogy for treating complex geometry as a Cartesian
grid method [5].

The basic multiuid method is coupled to a
Cartesian grid algorithm which also uses a VOF
representation of the uid-body interface. This
representation of the uid-body interface allows

the algorithm to easily accommodate arbitrarily
complex geometries. The resulting single grid
multiuid-Cartesian grid integration scheme is
coupled to a local Adaptive Mesh Re�nement
(AMR) This is a code based on the original ideas
found in [4] and later in [3]. The current ver-
sion [1], [10] is an object-oriented (C++) code
framework for managing a hierarchy of logically
rectangular re�ned grids that is hybridized with
Fortran routines that provide low level support
and integrator instantiation. In regions where
errors are deemed unacceptable, a grid is locally
re�ned. This has the two-fold result of increas-
ing accuracy locally where it is required as well
as concentrating the computational e�ort where
it is needed.
What follows is a description of the multiuid

VOF representation and the predictor-corrector
Godunov solution in one dimension. Then there
is an overview of the previously documented
Cartesian grid method, followed by a discus-
sion of the modi�cations necessary to couple the
multiuid-Cartesian grid method into AMR. A
simple nozzle problem in axisymmetric coordi-
nates illustrates the adaptive code results.

Multiuid Algorithm

VOF Representation

The basic assumptions of the multiuid for-
mulation are that there is pressure equilibrium
among all uid components within a cell and
there is a single velocity vector for each cell, in-
dependent of the mixture. A rigorous deriva-
tion of this system is given elsewhere [8] and is
not repeated here. The �rst assumption says
that p�(x; t) = p(x; t), or that the value of the
pressure is independent of the uid component.
This is physically reasonable since across a con-
tact discontinuity (material interface) there is no
pressure jump and the partial pressures within a
mixed cell must be equal. Under these assump-
tions, the Euler equations for a multiuid system
are

@f�

@t
+r � (uf�) = f�

�̂

��
r � u (0.1)

@

@t
(f���) +r � (uf���) = 0 (0.2)
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@�u

@t
+r � (uu�) +rp = 0 (0.3)

@

@t
(f���E�) +r � (uf���E�) (0.4)

+pf�
�̂

��
r � u+ f�

��

�
u � rp = 0

where f�, ��, and E� are the volume fraction,
density, and total energy density of uid com-
ponent �. The volume fraction is de�ned as
f� = ��=� where � is the volume of the cell
and �� is the volume of the cell occupied by
uid �. �� is the sound speed  for uid �, and
�̂ = 1=

P
� (f

�=��) which represents the fraction
weighted sound speed  for the mixture.
The pressure that appears in the above system

is de�ned to be a thermodynamically consistent
pressure given as p =

P
� (f

�p�), where p� is the
partial pressure of component �. Note that the
formulation is su�ciently general to allow real
gas EOS systems described by pressure given as
a function of density and internal energy.

Godunov Implementation

First rewrite the above system of equations in
vector form, in one spatial dimension, in antici-
pation of an operator split implementation, and
for two uids � and �.

@Q

@t
+

@F (Q)

@x
= S(Q; x) (0.5)

Here, the state vector is given as

Q(x; t) = (��f�; �u; ��f�E�; f�; (0.6)

��f�; ��f�E� ; f�)t

F (Q) is the ux vector given by

F (Q) = (��f�u; (�u)u; ��f�E�u; f�u; (0.7)

��f�u; ��f�E�u; f�u)t

and the source term on the right hand side is
given by

S(Q; x) = (0;rp; (0.8)

�(pf�
�̂

��
r � u+ f�

��

�
u � rp); 0; 0;

pf�
�̂

��
r � u+ f�

��

�
u � rp; 0)t

Notice that the uid components are treated
in a symmetric fashion. In most tracking imple-
mentations, the total densities and energies are
solved for along with partial densities, energies
and volume fractions for only one of the uids.
The state for the second uid is obtained by sub-
traction of the partial values from the totals. In
our formulation each component is treated sep-
arately, but the method is designed to have the
multiuid results reduce upon summing over �,
for the case of equal sound speed , to the sin-
gle uid algorithm. With respect to equations
0.5 through 0.8 given above, summing the partial
energy equations, over both uids, gives conser-
vation of total energy for the mixture.
The operator splitting has the following form

in two-dimensions

Qn+2 = LxLyLyLx(Q
n) (0.9)

and in three-dimensions as

Qn+2 = LxLyLzLzLyLx(Q
n) (0.10)

The operator L� is the sweep in the � coordinate
direction and at the end of the cycle, the solution
is formally second-order accurate.
The scheme used to integrate the above system

of equations is a second-order Godunov method.
The algorithm is based on the general higher-
order Godunov methodology described in [7] and
[2]. In general terms it can be thought of as
a predictor-corrector scheme where cell centered
primitive values are traced along characteristics
to the half-time level at cell edges using a higher
order slope approximation to the local state. The
tracing procedure takes data de�ned at xnj to

x
n+1=2

j+1=2
to de�ne the left (L) state. The right

(R) state is obtained by tracing data at xnj to

x
n+1=2

j�1=2 . Then a local Riemann problem is ap-

proximated at each cell edge at the half-time level
given the states L and R. The solution to the Rie-
mann problem is used to compute uxes at the
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half-time level that are �nally used to update the
solution as written in conservative form. In gen-
eral, the conservative update can be written as

Qn+1
j = Qn

j �
�t

�x
[F (Q�

j+1=2)]j (0.11)

+
�t

�x
S(Q�

j+1=2; xj+1=2)

Note that the source term is time centered and
depends on Q�, the approximation to the Rie-
mann problem, or Godunov state, which exists
at tn+1=2. The notation, [�]j , is the ux di�er-
ence of � over cell j, i.e. [�]j = �j+1=2 � �j�1=2

The volume fraction equation and source terms
due to di�erences in compressibility are dis-
cretized in a special way following the general
form given in [8] and are speci�ed below. Also,
the source terms due to geometric sources are
discretized in a straightforward way as above.
To summarize, the solution procedure for a sin-

gle grid implementation has the following steps:
(1) construct limited central di�erence approx-
imations to traced state slope, (2) trace along
characteristics to half-time level at cell edges to
obtain L and R states, (3) solve the local Rie-
mann problem approximately, at the cell edges
(4) perform a conservative update of the solution
using the results generated in the Riemann solu-
tion.

Characteristic Analysis

For the characteristic tracing step, we need
to perform a characteristic analysis of the
system of equations. To accomplish this,
we rewrite the system in quasilinear form in
terms of the primitive variables, q(x; t) =�
��f�; u; p; ��f�e�; f�; ��f�; ��f�e�; f�

�t
where e� is the internal energy per unit mass
of uid � and for an ideal gas is given by e� =

p�

��f�(��1)
and likewise for uid �. It is written

as

@q

@t
+A

@q

@x
= s(q; x) (0.12)

where A = @F=@q

Note that the di�erential compressibility
source terms are absorbed into the quasi-linear

form. The remaining sources contained in,
s(q; x), are due to geometric factors if one is using
general curvilinear coordinates.
The �rst step in the analysis requires determin-

ing the eigenvalues and corresponding left and
right eigenvectors for the matrix A. The eigen-
values are given as

�+ = u+ c; �� = u� c (0.13)

and
�0i = u; i = 1; 2; 3; 4; 5; 6: (0.14)

where mixture sound speed is de�ned as c2 =
�̂p=�. The former are the right and left propa-
gating acoustic waves moving with the local ow.
The latter eigenvalue has multiplicity 6 instead
of 2 for the single uid Euler equation. All the
eigenvalues are real so that the system above is
classi�ed as hyperbolic.
The corresponding left eigenvectors, li, and

right eigenvectors, ri are computed for i = u +
c; u � c; u01; :::; u06 and orthonormalized so that
lti � rj = �ij , where � is the Kronecker delta func-
tion.

Characteristic Tracing

To compute the left state (L) for cell edge j +
1
2
by characteristic tracing, we begin by Taylor

series expanding the solution about the jth cell
center. That is,

q
n+ 1

2

j+ 1

2
;l
= qnj +

�x

2
(
@q

@x
)nj +

�t

2
(
@q

@t
)nj (0.15)

Using the partial di�erential equation for q
gives

q
n+ 1

2

j+ 1

2
;l
= qnj +

1

2
(I�

�t

�x
A(qnj ))(

@q

@x
)nj�x (0.16)

+
�t

2
s(qnj ; xj)

where (�)nj denotes evaluation at (tn; xj).

The vector, (
@q
@x )

n
j�x, is the slope of the local

primitive variables. A fourth order approxima-
tion to the slope at cell centers is constructed
and then limited in a monotone fashion as given
by [7]. Denote the limited slope as �limqnj such
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that �limqnj � (
@q
@x

)nj�x. Now we represent these
slopes in an expansion in terms of the right-
eigenvectors of the linearized system as

�limqnj =
X

i=(u+c;u�c;u01;:::;u06)

�iri (0.17)

The �i are the expansion coe�cients and are set
according to �i = li �

�
�limqnj

�
.

The current procedure of limiting the raw
slopes and then de�ning the expansion coe�-
cients is in contrast to the method used by [13]
where the expansion coe�cients are computed
and then limited by the above procedure.

Since the system is hyperbolic and has a com-
plete set of eigenvectors, one can construct a
similarity transformation so that, A = R�R�1,
where � = [�i] is a diagonal eigenvalue matrix
and R is the matrix with columns the right eigen-
vectors. Also, in order to limit the characteristic
tracing to directions that contribute to the left
(L) state at edge j + 1=2 from cell center j, we
introduce a projection operator as

PL(wj) =
X

k:�k;j>0

(lk;j � wj)rk;j (0.18)

where the notation �k;j means the k
th element of

� evaluated at cell j.

Now substituting the limited slope approxima-
tion, �limqj � (

@q
@x

)nj�x and its expansion in
terms of right eigenvectors into equation (2.26)
and applying the projection operator for left
states gives

q
n+ 1

2

j+ 1

2
;L
= qnj +

1

2

X
k:�k;j>0

(I �
�t

�x
�k;j)�k;jrk;j

(0.19)

+
�t

2
s(qnj ; xj)

The projection operator for the right state is
given as

PR(wj) =
X

k:�k;j<0

(lk;j � wj)rk;j (0.20)

and we obtain an expression for the right state

(R) as traced from cell j as

q
n+ 1

2

j+ 1

2
;l
= qnj �

1

2

X
k:�k;j<0

(I +
�t

�x
�k;j)�k;jrk;j

(0.21)

+
�t

2
s(qnj ; xj)

Riemann Solution

Given the traced states, the predictor step is
completed by solving the local Riemann prob-
lem to obtain the Godunov states. Instead of a
full Riemann solver, we adopt an approximate
solution that meets the design goal of avoiding
EOS evaluations when building the uxes from
the Godunov states necessary for the conserva-
tive update. The choice of primitive variables, q,
facilitates this design point. The current approx-
imate solver is a simpli�ed version of [9], in the
spirit of [2] and given in [8]. The resulting algo-
rithm requires no EOS calls and is nearly twice
as fast as the one given in [9].

Conservative Update

Having obtained the Godunov states from the
Riemann solution, we can construct the updated
solution. We begin with the update for the vol-
ume fractions. This algorithm is based on the
formulation presented by [8]. The volume frac-
tion update is performed in two steps. The �rst
satis�es the linear advection equation (neglecting
the source term). The second takes into account
these source terms. The �rst step is given as

~f�j = f
�;n
j �

�t

�x
[F4(Q

�)]j (0.22)

~f�j = f�;nj �
�t

�x
[F7(Q

�)]j (0.23)

The subscript on the ux vectors denotes that
component of it and Q� is the Godunov state.
The next step is to calculate the e�ects of

the di�erential compressibility source on ~f� and
~f� in order to obtain f�;n+1 and f�;n+1. To
this end, write the full update (advection plus
sources) as

f�;n+1 = ~f� +�tf�
�̂

��
r � (u) (0.24)

5



Summing this equation over the � and � uids
gives an approximation for r � (u), which we de-
note as Du. Explicitly this is

Du =
1

�t

0
@1� X

i=(�;�)

~f i

1
A (0.25)

Therefore, we arrive at the �nal update as

f
�;n+1
j = ~f�;nj

 
1 +

�̂

��
�t(Du)j

!
(0.26)

and likewise for f�;n+1
j . Note that this approx-

imation has the property that it enforces the
constraints that

P
i=(�;�) f

i;n+1 = 1 and 0 �

f�;n+1 � 1.
The remainder of the uid components are �rst

updated using standard conservative di�erenc-
ing for the advective portion. The partial en-
ergy equations have source terms and the discrete
form of these, taken from [8], will be given below.
The conservative update for the partial density is

(f���)
n+1
j = (f���)

n
j �

�t

�x
[F1(Q

�)]j (0.27)

and likewise for
�
f���

�n+1

j
. The momentum

equation update is given as

(�u)
n+1
j = (�u)

n
j �

�t

�x
[F2(Q

�)]j (0.28)

+
�t

�x
[p�]j

Finally, the partial energy equation update, with
a similar expression for the second uid, is

(f���E�)
n+1
j = (f���E�)

n
j �

�t

�x
[F3(Q

�)]j

(0.29)
�t

�x
S3( ~f

�
j ;Q

�

j )

The source term S3 is given as

S3( ~f
�;Q�) = ~f��p

~�

��
[u]+

(f���)
n+1
j

�n+1
�u[p] (0.30)

The term, ~�, is given by ~� = 1=
P

i=�;�(f
i=�i)

The overbar denotes averaging of the Godunov

state to obtain a cell centered value at the half-
time level. The update for

�
f���E�

�n+1

j
follows

in a similar fashion from the above equation. It is
worth noting that the above discretization upon
summing over the two uids reduces to the sin-
gle uid total energy for the case of equal sound
speed �.

Cartesian Grid Overview

The Cartesian grid method used is based on
a VOF representation of the boundary. The
present discussion will serve as an overview; the
details are presented in [14]. With respect to the
Cartesian grid method, there are volume frac-
tions (not to be confused with the above mul-
tiuid volume fractions) that denote the volume
of uid that is outside of a body, or equivalently,
inside the ow�eld region. These together with
aperatures, or area fractions of cell faces that lie
inside the ow domain, complete the description
of the geometry. In [14], the underlying Godunov
integration scheme was an unsplit version. In this
work, the Cartesian grid algorithm was converted
to an operator split one, which signi�cantly in-
creased performance. Also, this facilitated incor-
poration of the multiuid integration algorithm.
As a setup procedure for the method, extended

states, Qext, must be de�ned in the body. These
values, Qext, de�ne sensible values for cells in the
body near the body surface. This ensures that
the �nite di�erence stencil will compute reason-
able uxes for the cells near the body surface.
Now the above multiuid integrator is used to

return the uxes and the discretized form of the
sources terms necessary to update the solution
one timestep. Away from the boundaries, these
uxes are su�cient to determine the new solu-
tion, but at this point no distinction is made be-
tween cells inside or outside of the body. These
uxes are used to update the extended states to
yield, Qext;n+1.
For mixed cells, cells containing both body and

uid, a local modi�ed Riemann solution is com-
puted. A local approximation to the body nor-
mal is determined and left and right states are
speci�ed by Qn. The Riemann solution yields a
frontal ux across the body. The uxes returned
from the multiuid integration together with the
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frontal ux determine a preliminary solution de-
noted as ~Q.
Now we de�ne the e�ect of the body as an in-

cremental change from Qext;n+1 by de�ning

�Mijk = �ijkQ
ext;n+1
ijk � �ijk

~Qijk (0.31)

Su�ciently far from the body, it is seen that �M
vanishes. So this leads to the update

Qn+1
ijk = Q

ext;n+1
ijk +

�Mijk

�ijk
(0.32)

For Cartesian grid mixed cells, �ijk can be ar-
bitrarily small which would require an excessive
timestep restriction for the method to remain sta-
ble. We use the algebraic redistribution ideas of
[6] to modify its discretization in mixed cell to be
both stable and conservative. In particular, we
perform a preliminary update of the form

~Qijk = Q
ext;n+1
ijk + �Mijk (0.33)

which does not have a CFL restriction but vio-
lates discrete conservation. Then we redistribute
(1��ijk)�M

ijk=�ijk onto the grid in neighboring
cells inside the ow domain and regain conserva-
tion. Note that this simpli�ed procedure is only
correct for reecting wall boundary conditions.

AMR Considerations

When coupling any integration algorithm to
AMR, we must be concerned with retaining
global conservation [3]. This is an important
issue because as the problem domain is cov-
ered by a hierarchy of re�ned grid patches, there
will be uxes across coarse/�ne grid boundaries.
In addition, the redistribution procedure out-
lined above provides an additional mechanism
for moving state quantities across the bound-
aries. Also, the multiuid integrator has di�er-
ential compressibility source terms which com-
municate across coarse/�ne grid boundaries. All
three of these sources of inter-grid-level commu-
nication across grid boundaries must be treated
correctly to maintain conservation.
The basic single uid AMR implementation

maintains global conservation by using a proce-
dure known as reuxing. Basically, the uxes

generated in the Godunov solution are saved and
accumulated for �ne grid faces that border coarse
grid cells that are not themselves re�ned. The
di�erence between these accumulated uxes and
the coarse grid ux for the face is used to up-
date the coarse grid solution. In this way, the
uxes into a coarse grid cell, bordering a �ne
grid, are consistently approximated, using uxes
taken from the underlying �ne grid rather than
the coarse grid ux.
The reuxing procedure for the multiuid

AMR version is modi�ed to account for the di�er-
ential compressibility sources terms. Additional
di�erential quantities are accumulated including
the average Godunov velocity as represented on
the �ne grid. Note that this velocity is normal
to the cell face undergoing reuxing. In addition,
we need access to the current state on the coarse
grid cell so that �̂ can be computed. In general,
this is only accessible through the EOS. This im-
plies an added computational expense, but the
result is global conservation with respect to the
mixture.
The additional terms needed to account for the

source terms in the volume fraction, and partial
energy equations are given as

(��f�)C = (��f�)C + iface
�tC

�xC
(�F1) (0.34)

(�u)C = (�u)C + iface
�tC

�xC
(�F2 + �p) (0.35)

(��f�E�)C = (��f�E�)C + iface
�tC

�xC
(0.36)

 
(�F3) + (�(up)� �U�p)f�

�̂C

��;C
+ �U(�p)

��f�

�

!

f�;C = iface
�tC

�xC

 
(�F4)� (�u)f�;C

�̂

��

!

(0.37)
The second partial energy equations follows from
above. The factor, �(�), is the increment of quan-
tity � as computed by taking the di�erence be-
tween the value computed for the coarse grid and
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the sum over the underlying �ne grid faces. �U is
the average Godunov normal velocity described
above. The unit function iface is positive or
negative depending on whether or not the ux
is oriented in the positive or negative coordinate
direction, respectively.
The procedure to retain global conservation for

the Adaptive Cartesian grid algorithm is called
re-redistribution. In addition to the usual re-
uxing that occurs at coarse/�ne grid boundaries
away from bodies, there is an additional step nec-
essary to account for state movement induced by
the redistribution procedure. This procedure is
documented in [14] and not repeated here.

Test Problems

We consider a simple nozzle problem as a test
of the algorithm. It can be considered as a simple
model for an ori�ce issuing into free space, sim-
ilar in design to a rocket exhaust nozzle. This
problem is run in two-dimensions with axisym-
metric geometry. There is a straight tube section
followed by the nozzle section that opens into the
ambient medium. The inlet boundary conditions
are straight ow down the tube with inlet Mach
number, Min = 2:04, inlet density to ambient
density ratio, �in

�1
= 0:66, and inlet pressure to

ambient pressure ratio, pin
p1

= 2. The introduced
uid is pure uid �, issuing into ambient uid �.
The nozzle is approximated by a parabola with
exponent 3, i.e. inlet is in the z direction and the
nozzle is given as z � r3. In the �gure, the quan-
tity ��f� is shown. The calculation is adaptive
with two levels of re�nement. Each level of re-
�nement is a factor of two �ner over the previous
level. The re�nement is set to tag the multiuid
cells (multiuid mixed cells) as well as ow dis-
continuities such as shocks and contacts. Note
the leading bow shock that is re�ned by not vi-
sualized as it exists in the uid �.
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Figure 1: The evolution of ��f� in a model nozzle problem is shown at six times. The Cartesian
grid body is shown in black. The overlayed grids represent the AMR re�ned patches with two levels
of re�nement over the base grid. Each level is a factor of two �ner than the previous level The
inlet ow is supersonic with Mach number 2:04. The ow expands to accomodate the increased
cross-sectional area of the nozzle. Shocks form in the jet core (Mach discs) as the uid exits the
nozzle.
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